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There arise experimental situations in educa- 
tional research where a binomial model is assumed 
and inferential statistics based upon normal 
curve theory are employed to test hypotheses 
(e.g., g test for the mean). One example is 
student guessing behavior on multiple choice 
tests (See for example, Ebel,) where the prob- 
ability of obtaining a correct answer by guess- 
ing is 1, K = number of choices per item. 

K 
As is well known, the use of the normal curve 
to evaluate probability levels of Bernoulli 
sequences, or more specifically cumulative 
Bernoulli sequences, depends upon the asymptotic 
convergence of the binomial distribution function 
to that of the normal distribution function (e. 

g., Fisz, 1963, or almost any standard text on 
mathematical statistics or probability). What 
is also well appreciated is that for finite sam- 
ples, the utilization of normal integrals to 
evaluate binomial situations involves some error. 

Many studies have investigated and catalogued 
facets of the error related to such variables as 
sample size and population proportion, among 
others. (See, for example, Mosteller, 1961; 
Jeffreys, 1961; Raff, 1956; Mood and Graybill, 
1963; Dayton, 1964; Plackett, 1964; Munroe, 

1951.) 

One of the more widely used techniques for 
making the normal integral more valid for bino- 
mial experiments is the Yates -type continuity 
correction. Typically, a constant of one -half 
is subtracted from the absolute value of the 

difference between the sample value and the 
assumed population mean in forming the Z sta- 
tistic. 

Thus, instead of the analytically derived 
Z =X -np, we have Zo =IX- n 

npq 

This "correction" factor is usually attributed 
to Yates and dates to 1921 in course outlines 
of the Department of Applied Statistics at 
University College, London ( Plackett, 1964). 

It is the contention of the present paper that 
the purpose and operation of the Yates -type 
correction in the normal approximation to the 
binomial is still misunderstood, particularly 
among educational statisticians. If one samples 
the standard texts in educational research and 

statistica (e.g., Fryer, 1966; Cornell, 1956; 
Walker and Lev, 1953), one comes away with the 
fact that the purpose of the correction for 
continuity is to effect better fitting normal 
curves for the binomial model. 

Todhunter (1931) reports Yates as first applying 
that connotation to integrals of f(Zc) compared 
tof(Z). Lindgreen (1964) employs an intuitive 
approach to demonstrate that using Zc provides 
lesa error in the approximation than using Z. 

Richardson (194 4) concurs in this interpretation, 
while Cochran (1953) and Dayton (1964) devote 

256 

papers to finding other subtractors than one -half 
to provide better fitting normal approximations. 

In recent years, several authors, (e.g., Montel 
and Greenhouse, 1968) have demonstrated, by 
using computer -based procedures, that the con- 
tinuity correction may not provide better fitting 
theoretical curves at all, but will tend to 
reduce the percent of false rejections of the null 
hypothesis. 

The present paper investigated this relationship 
of using the normal approximation to test bino- 
mial hypotheses but considering an additional 
factor of importance in educational research 
which has not been explored previously by applied 
statisticians. 

Typically, the research setting in which the 
binomial model is assumed (e.g., test -taking 
behavior) calls for the formulation of the non - 
directional hypothesis. This concept is related 
to the removing of a- priori bias between two 
opposing methods. It is the contention of some 
educational statisticians (e.g., Baths, 1964) 
that research hypotheses in educational experi- 
ments should almost always be non directional. 

In the binomial situation, if we are given N and 
and wish to calculate Xo), where Xo is a 

given number of defined successful outcomes in a 
Bernoulli sequence, a non -directional hypothesis 
would be defined as follows: 

Directional probability refers to the probability 
of all successes at least as extreme from np as 
Xo and in the same algebraic direction from np as 
X. Non -directional probability includes the 
directional total plus the probability of all 
successes at least as extreme from np as (X1) 
and in the same algebraic direction from np as 
(X1), where (X1) is the nearest integer value 
to the X1 whose Z score is the additive inverse 
of the Z score of X. 

Thus, non -directional hypotheses yield prob- 
abilities of sample occurrence greater than or 
equal to directionally calculated probabilities. 
Very few studies of the continuity correction 
and the error in using normal integrals have 
considered the case of non -directional binomial 
hypothesis. Those that have (e.g., Mosteller, 
1961), have assumed that symmetry would negate 

studying the inverse sample results. However, 
the binomial distribution is not always sym- 
metrical about its mean value, and one cannot 
assume the error function will simply be pro- 
portioned on both sides np. 

Thus, the present paper investigated the relative 
error distribution in using the standard unit 
normal curve for binomial sequences. Computer 
generated samples were employed to calculate the 
relative error for directional and non- direction- 
al hypotheses and for corrected and uncorrected 
Z- statistics. 



Since the skewness of the binomial distribution 
appears in the literature to be of paramount 
importance in assessing the degree of conver- 
gence between the normal and binomial, the 
present study controlled for skewness. 

For a given value of skewness, binomial prob- 
abilities were calculated for various n and p 
combinations. It can be shown (Fiez, 1963) 
that for the binomial SK = q - 

(npq 

Since skewness is not bounded and since the 
number of usable samples generated varies with 
the skewness, and further, since practical 
study had shown few instances where one 
was chosen as an upper bound for SK. The number 
of usable samples for study is limited by SK, 
since we can show that p = ), y = SK 

Thus, for large values of SK, p will be very 
small and the associated Z statistic will be too 
large for meaningful comparisons. The skewness 
was incremented by 0.02 from zero through one, 
and the program generated the relative error 
distribution, summary statistics and the percent 
of rejections of null hypotheses by the normal 
approximation when the binomial probabilities 
were greater than .05 or .01, respectively. 
This procedure was replicated for the direction- 
al and non -directional hypotheses and uncorrected 
and corrected Z statistics. 

There were little data to support the belief, 
held in educational research, that unqual- 
ifyingly produces significantly better fitting 
normal curves to the binomial model. On the 

other hand, the were associated with some- 
what lower mean relative errors, but not for all 
values of skewness. 

In fact, for directional hypotheses, small 
binomial skewness resulted in better fitting 
curves for uncorrected than for corrected Z 
statistics. As the skewness increased Zo did 
yield normal curves with less relative error. It 

is interesting to note that the corrective factor 
of was typically greater for non -directional 
than for directional hypotheses in lowering the 
mean value of the relative errors, and that as 
the skewness increased corrective power 
also increased. Further, even the uncorrected 
non -directional curves had less relative error 
than the directional counterparts. The following 
table lists the mean relative errors for selected 
values of binomial skewness. 

Moreover, the distributions of relative error 
were all positively skewed and platykurtic. As 

the binomial skewness increased, the relative 
error distributions became less positively 
skewed, a result of the general tendency of the 
error to increase as the binomial skewness 
increased. The non -directional errors were the 
most positively skewed. The distributions of 
relative error were non -normal in form. 
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The second characteristic of the present inves- 
tigation dealt with the percent of Type I errors 
under the four modes of the Z statistic. The 

data presented show clearly that employing the 
Yates -type correction factor results in a sub- 
stantial reduction of Type I errors in using 
normal integrals to evaluate binomial hypotheses 
over the uncorrected Z statistics. This is an 
expected result for directional hypotheses, but 
is not an obvious result for the non -directional 
case. In fact, as the following table shows, 
the reduction in Type I errors is the largest for 
non -directional corrected hypotheses. Addition- 
ally, for some values of binomial skewness, there 
were no Type I errors made when using the non - 
directional Zc. 

Of interest is to note that, while in general 
the corrected Z statistics had less percent of 
Type I errors than the uncorrected Z scores, 
such percent for the most part increases as the 
binomial skewness increases. At the .01 level, 
the percent of Type I errors is generally larger 
than at the .05 levels across all four modes of 
Z statistics. 

Further, the disparity between the percent of 
Type I decision errors for corrected and 
uncorrected Z statistics is not as great at 
the .01 level than at the .05 levels. 

It is also important to note that even when the 
binomial skewness is zero and the directional 
and non -directional error distributions are 
identical, the percent of Type I errors are 
unequal. This again emphasizes the need to 
investigate the non -directional case for 
binomial hypotheses. 

The present paper investigated the distributions 
of relative error in using normal integrals to 
assess probabilities for binomial hypotheses 
under four modes of the standardized Z statistic: 
directional uncorrected, directional corrected, 
non -directional uncorrected, non -directional 
corrected. Computer based procedures generated 
relative error distributions, summary statistics 
and Type I error tables for each mode of Z 
statistic while controlling for the binomial 
skewness. Skewness was incremented from 0.00 
to 1.00 by steps of 0.02, and n and p combina- 
tions for each skewness value, n = 2(100)(2). 

In summary, then, the following conclusions 
seem tenable: 

1. In general, when normal integrals are used 
for binomial hypotheses, the mean relative 
errors increase as the binomial skewness 
increases. 

2. Bon- directional Z statistics yield better 
fitting normal curves relative to the 
binomial probabilities than do directional 

statistics. 



3. In general, corrected Z statistics are 

associated with somewhat less mean relative 
errors than uncorrected Z statistics. 
However, for binomial skewness near zero, 
directional uncorrected Z's have less mean 
error than directional corrected Z's. 

4. The percent of Type I decision errors made 
when normal probabilities are used generally 
increases as the binomial skewness increases. 

5. Corrected Z's are associated with lower 
percents of Type I errors than uncorrected 

6. Non -directional Z's are associated with 
lower percents of Type I errors than direc- 
tional Z's. 

7. The percent of Type I decision errors made 
using normal integrals is generally inversely 
related to the alpha level of the null 
hypothesis. 

It would appear that when using normal integrals 
to evaluate binomial hypotheses, the skewness 
of the binomial affects both the relative error 
in the calculation of probabilities and the 
percent of error in rejecting the null hypoth- 
esis. The Yates -type continuity correction 
combined with a non -directional hypothesis 
minimizes both the relative error and the error 
in decision compared to the other modes. 

It would seem that for nearly symmetrical 
binomials <.10), a "better fit" is obtained 
with the directional uncorrected than the direc- 
tional corrected. However, even in this case, 
one lessens the percent of Type I decision errors 
by using Zo. 

Thus, the data of the present study seem to 
support the contention that the primary effect 
of the continuity correction in the normal 
approximation to the binomial is to provide a 
more conservative test of hypothesis rather than 
to obtain better fitting normal integrals. 
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Binomial 
Skewness 

Table 

Directional 
Uno 'voted 

1. Relative Errors 

Won-Directional 
Corrected 

Directional 
orrected 

Ron-Directional 
Uncorrected 

0.00 
.02 

.04 

.06 

.08 

.10 

.12 

.14 

.16 

.18 

.20 

.22 

.26 

.3o 

.34 

.38 

.42 

.46 

.50 

.6o 

.7o 

.8o 

.90 
1.00 

.235 
1.232 
2.367 

1.577 
.688 

.489 

.446 

.434 
455 
.463 

.465 

.44 7 

.497 

.522 

.538 

.550 

.553 

.570 

.537 

.600 

.618 

.636 

.602 

.095 
2.115 
5.623 
3.876 
1.267 

.444 

.342 

.306 

.285 

.277 

.273 

.314 

.29 2 

.300 

299 
.300 

.289 

305 
.312 
.318 

337 
.372 
.327 

.235 

.291 

325 
.338 
.352 

.374 

.38.1 

.391 

.399 

.408 

.1421 

.1421 

.428 

.447 

.447 

.468 

.464 

.473 

.499 

.473 

.523 

.550 

.473 

095 
.118 

.132 

.141 

147 
.164 
.172 
.191 

.199 
.214 
.226 
.223 

.249 

.255 

.271 

.314 

.306 

.295 

.363 

.282 

.305 

.390 

.363 

.304 

Table 2. Percent of Tye Decision Errors at .05 and .01 Levels 

Binomial 
kewness 

Directional 
Uncorrected 

Direotional 
Correctional 

Non -Directional 
Uncorrected 

Non -Directional 
Corrected 

.0 .01 .05 .01 .0 .01 .05 .01 

0.00 3.40 2.96 0.00 0.00 3.7o 2.81 

0.04 

4.08 3.06 0.53 0.98 3.82 3.65 0.27 0.35 
3.56 3.95 0.61 0.91 4.02 3.92 0.30 0.30 

.06 5.00 4.88 1.03 2.18 4.13 4.25 o34 0.34 

.08 5.80 5.56 1.03 2.32 5.20 4.84 o.39 0.51 

.10 6.72 6.06 1.13 2.82 6.46 4.61 0.42 0.70 

.12 6.40 6.68 1.07 3.83 4.13 5.83 0.61 

.14 7.00 6.70 1.48 3.95 5.78 4.11 0.16 0.00 

.16 7.90 7.58 1.58 4.74 3.39 4.19 0.18 

.13 7.82 7.82 0.74 4.28 6.29 3.74 1.49 0.18 

.20 7.13 8.74 1.76 4.31 6.24 4.46 0.59 

.22 6.38 9.19 1.24 5.59 6.19 5.63 0.00 0.62 

.24 8.72 10.08 1.72 5.36 2.13 5.43 o.00 1.72 

.26 8.32 9.74 3.39 4.97 3.04 5.48 0.00 0.63 

.30 13.97 11.35 2.20 4.96 2.18 5.68 0.00 2.45 

.40 15.08 10.42 3.49 4.74 3.55 6.21 0.75 

.50 10.27 10.96 3.09 8.77 3.2o 8.68 5.41 1.29 

.60 6.43 12.14 1.08 8.38 1.43 8.33 2.71 

.7o 6.81 14.99 0.63 7.57 1.64 8.45 5.99 

.8o 11.32 15.60 11.19 14.08 10.4o 12.84 0.00 5.42 

.90 16.67 17.01 1.26 5.04 2.43 16.67 0.00 1.26 
1.0o 17.89 20.33 6.12 21.43 17.75 18.29 o.00 20.92 
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